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Living organisms maintain their lives under far-from-equilibrium conditions by creating a rich variety of
spatiotemporal structures in a self-organized manner, such as temporal rhythms, switching phenomena, and
development of the body. In this paper, we focus on the dynamical process of morphogens in somitogenesis in
mice where propagation of the gene expression level plays an essential role in creating the spatially periodic
patterns of the vertebral columns. We present a simple discrete reaction-diffusion model which includes
neighboring interaction through an activator, but not diffusion of an inhibitor. We can produce stationary
periodic patterns by introducing the effect of spatial discreteness to the field. Based on the present model, we
discuss the underlying physical principles that are independent of the details of biomolecular reactions. We also
discuss the framework of spatial discreteness based on the reaction-diffusion model in relation to a cellular
array, by comparison with an actual experimental observation.
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I. INTRODUCTION

Living organisms maintain their existence through the
generation of temporal rhythms, switching phenomena, and
spatiotemporal structures that appear in a self-organizing
manner under far-from-equilibrium conditions. In particular,
the developmental processes of higher animals, where each
individual organism creates complex structures from a
spherical egg accompanied by symmetry breaking, have fas-
cinated many scientists, including mathematicians and physi-
cists, as well as biologists.

Ever since Turing proposed the epoch-making idea that
morphogens can self-organize into stationary patterns based
on the neighboring interactions among local kinetics, i.e.,
reaction and diffusion �1�, extensive studies have revealed
that nonlinear reaction-diffusion systems are quite effective
for interpreting many real spatiotemporal patterns in biologi-
cal systems �2,3�, where the best-known example may be the
coat patterns of animals and fish �4,5�. Other applications of
reaction-diffusion systems in biological systems include the
spatiotemporal behavior in the fusion and partial separation
of plasmodia of a slime mold �6–8�, excitable pulses in ner-
vous systems �3�, and the rhythmicity of cardiac tissues �9�.

Despite previous successes, there is increasing criticism
regarding the application of reaction-diffusion models with a
Turing structure to real biological systems. An important is-
sue is that, to create a stationary spatiotemporal pattern with

a reaction-diffusion model, the local kinetic units must show
two different types of interaction between neighboring cells:
the diffusion of an activator and a much greater diffusion
�long-range diffusion� of an inhibitor. However, this raises
the question of whether long-range diffusion of the inhibitor
is universal in biological systems. Moreover, the Turing
structure has been considered with regard to spatially con-
tinuous media. Although spatial continuity is acceptable in
most chemical reaction systems, this is usually not the case
in biological systems, simply because the cells in a multicel-
lular organism have a finite size. In some situations, the scale
of the spatiotemporal pattern of interest is much larger than
that of individual cells, and hence, the mathematical model
can support this assumption of a continuum. However, if we
consider the initial stage of the developmental process, when
many important biological patterns emerge, the number of
cells is usually small and their size cannot be neglected since
the field size where the phenomena occur is comparable to
that of a cell. In addition, since diffusion inside a cell is quite
fast compared to both diffusion across a membrane and the
time scale of cell dynamics �10�, instead of considering spa-
tial variation within single cells, cells can be regarded as
interacting discrete nodes in a network. More importantly,
from a mathematical perspective, it has been suggested that
the discreteness of reaction-diffusion systems can lead to
spatiotemporal patterns in another way, which is impossible
for the case of a continuum �11�.

In this paper, we focus on the dynamic process of mor-
phogenesis in somitogenesis. It has been observed that the
propagation of gene expression inspired by a segmentation
clock produces spatially periodic patterns in the vertebral
column. Somites are transient units that form repetitive body
structures such as vertebrae, ribs, and skeletal muscles. In
mice and snakes, they are generated regularly by a segmen-
tation process of the presomitic mesoderm �PSM� from the
anterior-most end �12–14�. Most recently, a similar dynamic
gene expression has also been confirmed in spider �15�.
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Based on experimental observations, it has been revealed
that, during somitogenesis, the expression level of some
genes sweeps across a field of cells, as in wave propagation
�16,17�. These genes express periodically at the posterior end
of the PSM, where a so-called “segmentation clock” works
�12,13,7,18,19�. As it propagates to the anterior end of the
PSM, the wave gradually slows down, shrinks in width, and
finally stops as an additional stationary band at the determi-
nation front, where a new segment is generated �12,13,16�.
In the case of a mouse embryo, the PSM is only about 50
cells �total length of the PSM is about 500 �m whereas the
diameter of a single cell is about 10 �m�. Thus, it is cru-
cially important to take the natural characteristics of the spa-
tial discreteness of the system into consideration.

To understand how clock oscillation is generated and how
it regulates segmentation, many attempts have been made to
create mathematical models. A simple ordinary differential
equation model was first proposed by Goodwin based on a
negative-feedback process in gene expression �20,21�. Re-
cently, more sophisticated models have been proposed to ex-
plain oscillatory gene expression by taking into account a
time delay �22�, a positive-feedback loop �23�, or some en-
vironmental factors �24�. Some models have also been pro-
posed to determine the spatial information of segmentation.
The most well-known model is probably the “clock and
wavefront” model, which was originally proposed by Cooke
and Zeeman �25�. It introduced the interaction between a
positional information gradient with biological oscillation.
However, this idea remained just a theoretical concept until it
recently gained experimental support �19,26,27�. Since then,
many mathematical attempts have been made to reproduce a
clock and wave front scenario �28–33�. There are also many
other frameworks, such as the reaction-diffusion model �34�,
clock and trail model �35�, cellular oscillator model �36�, and
so on.

Despite the success in the application of a mathematical
approach to somitogenesis, there are still many limitations.
First, many models control the specific position of spatial
strips “manually,” by defining thresholds or piecewise func-
tions. This is in contrast to the principal of the self-
organization of biological systems. Second, models based on
a continuum suffer from the difficulty of producing a narrow
boundary between two phenotypes �37,38� as sharp as two to
three cells. Finally, most current models assume the exis-
tence of two or more different types of interactions among
the neighboring cells, which are often introduced as diffu-
sions of an activator and inhibitor, which represent positive
and negative interactions, respectively.

In this paper, we present a simple one-dimensional
reaction-diffusion model that includes two hypothetical sub-
stances. There are three features in our model: �1� no inhibi-
tory interaction, �2� cell discreteness, and �3� spatial inhomo-
geneity. We will demonstrate how a spatially periodical
pattern with sharp boundaries from a smooth signal gradient
can be generated with a combination of cellular oscillation
and wave propagation. Although the proposed model is
highly abstract and idealized in the context of biology, we
keep in mind that the underlying physical aspects are beyond
the details of biochemical processes; they are more general
and independent of species. Based on our simple model, we

will introduce two kinds of length scales, which are reason-
able for the interaction length among neighboring cells, and
for judging whether discreteness will affect the dynamics.

II. DESCRIPTION OF THE MODEL

As a hypothetical model that describes the above charac-
teristics of gene expression in somitogenesis, we introduce a
set of discrete reaction-diffusion equations

�u

�t
= f�u,v� + DLu ,

�v
�t

= g�u,v� , �1�

where u and v are the intracellular concentrations of the ac-
tivator and inhibitor, respectively. The reaction terms of the
activator and inhibitor are given as follows:

f�u,v� =
1

�1
� 1

�
u�u − ���1 − u� − v + �� ,

g�u,v� =
1

�2
�u − v� , �2�

where �1 and �2 present the characteristic time scales of the
local reaction kinetics of u and v, respectively. The param-
eter � depends on space x and/or time t to represent the
spatial gradient and the temporal change in the concentration
of a certain substance. Its biological counterpart is the mor-
phogen gradient, such as the posterior-anterior concentration
gradient of FGF8 protein in PSM, which is considered to
play an important role in the formation of periodic patterns
in somitogenesis �12,39–41�.

Equations �2� are Fitzhugh-Nagumo type of models,
which has been well studied for a description of excitable
behaviors in biology. We adopt it to study the “activator-
inhibitor system” �see e.g., �3��, which includes an autocata-
lytic property of the activator and a negative-feedback loop
of the inhibitor �as shown in Fig. 1�. Figure 2 shows the
nullclines f�u ,v�=0 and g�u ,v�=0. By changing the param-
eter �, which adjust the amplitude of cubic function, we can
vary the local kinetics from oscillation to bistability �Figs.
2�a� and 2�b��, and avoid happening monostable state.

L in Eq. �1� is the Laplace operator which is defined as
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FIG. 1. Illustration of a reaction-diffusion system �activator-
inhibitor type�. Note that we exclude the diffusion of the inhibitor v,
i.e., Turing instability can never be satisfied in our model.
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Lu ª

1

�x2 �u�t,x + �x� − 2u�t,x� + u�t,x − �x�	 �3�

for a spatially discrete one-dimensional field with a grid size
of �x, or

Lu ª

�2u�t,x�
�x2 �4�

for a spatially continuous field �i.e., in the limit �x→0�.
Although cell to cell interaction may take place in many
different ways, such as membrane protein signaling, we
adopt a diffusionlike coupling between activator u in this
paper without losing generality. D indicates the strength of
interaction among neighboring cells. We need to emphasize
that the model in Eq. �1� does not include the diffusion term
of the inhibitor v, and, hence, it never shows Turing instabil-
ity.

III. SIMULATION RESULTS

Numerical simulations are carried out on a one-
dimensional field by substituting Eqs. �2� and �3� into Eq.
�1�. The spatial and temporal units are normalized as 1 mm
and 1 min, respectively. Based on the actual cell size �about
10 to 15 �m�, we choose the spatial mesh size as �x
=0.01. Numerical simulations are performed with the follow-
ing constant parameters:

�1 = 0.588, �2 = 32.1, D = 1.19 � 10−5,

� = 0.40 and � = 0.33. �5�

These values are chosen based on the details that we will
discuss later in Sec. IV.

Figure 3 shows the results of the numerical simulations in
spatiotemporal diagrams. Figure 4 illustrates the manner of
wave propagation and the variation in � in one-dimensional
reaction-diffusion fields.

A. Gradation of � leads to a standing pulse

Usually, the profile of � can be determined by diffusion
and degradation. For the sake of simplicity, we choose it as a
linear gradient function.

��x� = 0.21 − 0.20x, x � �0,1� . �6�

Since we discuss the phenomena in a normalized field, we do
not consider its relevance to spatial dependence, which is
usually important in development biology. In Fig. 3�a�, a
pulse is triggered at the left boundary �x=0� and propagates
to the right. It shrinks in width, and finally stands at a certain
point, due to the decrease in � �see Fig. 4�a��. The standing
pulse is stable and does not vanish after it stops. Here, the
wave front and back have different critical values of �, be-
low which they cannot propagate any further.

B. Generation of spatially periodic pattern

Next, we consider dynamical cases where � changes tem-
porally, and produce spatially periodic stationary patterns.
We consider two cases: the growth of an embryo and an
antagonist of a morphogen �42�.

If we consider the growth of an embryo, the parameter �
depends not only on spatial distribution, but also on temporal
evolution. We assume that it satisfies the following equa-
tions:

FIG. 2. Geometry of nullclines corresponding to �a� oscillatory
state in a big � case and �b� bistable state when � is small enough.

FIG. 3. Spatiotemporal diagrams of u�t ,x� illustrating the manner of wave propagation, depending on the geometrical distribution of �.
The grayscale from black to white indicates the level of u from 0 to 1. �a� Parameter � is given as an invariant spatial gradient. A single pulse
triggered at the left boundary propagates to the right, and finally generates a stationary band at a specific position. �b� If we consider the
growth of the embryo �the posterior end of PSM grows from x=0.55 to x=1�, the kinetic parameter � is a function of both space and time.
In this case, a pulse train leads to a static, periodic structure. �c� Parameter � is set to decrease as a wave passes, while we ignore the growth
of the embryo. The pulse train can also cause a static periodic structure. In contrast to �b�, there is large diversity in the band width of the
final pattern.
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��t,x� = �̃�t − tx� = 0.22 – 1.38 � 10−4�t − tx� ,

tx = 1.45 � 103�0.55 − x� , �7�

where tx denotes the birth time of the cell at position x. The
state variables u�t ,x� and v�t ,x� are taken to be zero before
the birth of the cell, i.e., t� tx. Thus, we have a critical line,
t=1.45�103�0.55−x�, in the spatiotemporal plot �Fig. 3�b��,
above which no cell exists. This line corresponds to the po-
sition of the posterior end of the growing PSM. As shown in
the right column in Fig. 4�b�, the gradient of � has its highest
concentration at the posterior end, which is moving leftward
as defined by x=0.55–6.9�10−4t. Correspondingly, the
length of PSM grows from 0.45 to 1. On the other hand, the

left column in Fig. 4�b� shows a series of pulses that are
periodically triggered by a biological clock at the left �pos-
terior� moving end. The pulse train propagates to the right
�anterior side� and forms a stationary and spatially periodic
structure. The output pattern fits the observation in �27�.

In the last stage of somitogenesis, several somites are still
generated when the growth of PSM slows down or even
stops �43�. Regarding these cases, we consider the situation
that � is locally inhibited by v, and seize the growth of the
embryo. The parameter � is governed by

���t,x�
�t

= − 6.0 � 10−4v	�� − 0.01� ,

initial condition:��0,x� = 0.33 − 0.20x , �8�

where 	��−0.01� is the Heaviside step function, which pre-
vents � from being less than 0.01. The simulation results are
shown in Figs. 3�c� and 4�c�. A series of pulses are triggered
from the oscillatory region at the left fixed end and propagate
to the right. At the same time, the concentration of � de-
creases globally, corresponding to the distribution of the in-
hibitor v. This model shows that a spatial periodic structure
in the bistable region can be autonomously generated even
without the aid of embryo growth.

IV. DISCUSSION

Based on our numerical simulations, we can conclude that
the interesting characteristics of gene expression in somito-
genesis can be reproduced by a simple discrete reaction-
diffusion system. The generated pattern is robust because the
interface is pinned in the bistable region of the cell chain. To
make cells transit from one state to the other, it needs to
overcome a high energy barrier, which is usually difficult in
a weak-coupling situation. Based on the present simple
model, we can infer some important physical aspects of ac-
tual somitogenesis, even if the exact biomolecular reactions
are still far from being clear.

A. Diffusion length

To judge whether the interaction length between neigh-
boring cells is within a realistic range, it would be useful to
define a spatial scale for measurement. This would be an
important factor for examining the validity of the proposed
model. As a spatial scale, we adopt a diffusion length over
which the activator u diffuses during its lifetime.

Let us briefly explain how to estimate the diffusion length
by using the relations among the physical quantities in the
model of Eqs. �1� and �2�. Since the activator u and inhibitor
v have quite different time scales �1
�2, u reacts much
faster than v. Thus, the value of v in the vicinity of the wave
front is an approximate constant v�. Under this condition, the
propagation speed c of the traveling waves can be expressed
by

c = K
D

�1
, �9�

where K is a dimensionless speed of the wave. For the reac-
tion function of Eq. �2�, K can be analytically described by

FIG. 4. Snapshots at different time points. Left and right col-
umns show the time evolutions of u and �, respectively. �a�, �b�, and
�c� correspond to three cases as shown in Fig. 3.
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K = �2��−1/2��u3
� − u2

�� − �u2
� − u1

��	 � 1, �10�

where u1
�, u2

�, and u3
� �u1

��u2
��u3

�� are three roots of
f�u ,v��=0. Previous studies have suggested that K is on the
order of O�1� except in some singular situations �44�. With-
out losing generality, we can simply fix K as unity by ignor-
ing the variation in � since we are mainly concerned about
the physical scale of the model. Moreover, since the large �2
implies slow negative feedback on u by v, the lifetime of u
can be estimated to be the time scale of v, i.e., �2. By using
a method similar to that for estimating Kuramoto’s length
�45,46�, we obtain the typical diffusion length of u in its
lifetime as

l� � 
D�2 = c
�1�2 � c�2, �11�

in which effective interaction with a neighboring cell can
take place, as illustrated in Fig. 5�a�.

A significant feature of the resulting diffusion length is its
experimental accessibility. Since parameters c, �1, and �2 can
be measured by appropriate experiments, we can estimate
l��c
�1�2 or, at least, the maximum of c�2 from experimen-
tal data. For example, let us adopt the actual experimental
data on somitogenesis in a mouse embryo, where expression
of the gene “Hes7” is believed to play an essentially impor-
tant role �e.g., �16��. Based on experimental observations, the
propagation speed of its expression c is about 250 �m /h.
Moreover, based on the observation that the half-life of the
Hes7 protein is about 22 min �24,47�, we obtain that the
characteristic time scale of the related reaction is in the order
�2�22 / ln 2�30 min. Thus, by substituting these values

into Eq. �11�, we obtain l��13 �m. This result shows that
the diffusion length is less than the scale of a single cell by
an order of magnitude �c.f. the diameter of a single cell is
usually about 10–15 �m�. Thus, it is clear that the reaction-
diffusion model proposed in this paper works within a real-
istic length of interaction among neighboring cells. Further-
more, Eq. �11� does not contain parameters that are specific
to some details in the biomolecular reactions. This feature
makes it possible to apply the model widely regardless of the
great complexity of biomolecular reactions. For example, it
would be helpful for identifying the time scale of biomolecu-
lar reactions that are related to dynamic gene expressions in
biological systems, including somitogenesis.

B. Importance of discreteness

Since our model is based on spatial discreteness, it raises
the question of whether discreteness indeed plays a role in
multicellular tissue. To answer this question, we introduce
another length scale ��
D�1.

As shown in Eq. �9�, the propagation velocity of a single
pulse is about c�
D /�1. On the other hand, since the time
interval in which the propagating wave front passes a certain
point is about �1, the length scale of the width of the wave
front � is about

� � c · �1 =
D

�1
�1 = 
D�1, �12�

as shown schematically in Fig. 5�b�.
Next, for the sake of simplicity, let us consider a reduced

one-dimensional reaction-diffusion equation which consists
of a bistable medium u,

�u�t,x�
�t

=
1

�1
f„u�t,x�… + DLu�t,x� , �13�

f�u� = u�u − ���1 − u�, � � 1/2. �14�

By introducing a dimensionless time s= t /�1 and considering
spatial discreteness, we get

du�s,x�
ds

= f„u�s,x�… + dc�u , �15�

where

�u  u�s,x + �x� − 2u�s,x� + u�s,x − �x� , �16�

dc 
D�1

��x�2 . �17�

It has been mathematically proven that, in the bistable me-
dium described by Eqs. �15�–�17�, if the coupling strength dc
is small enough, the propagation of a wave front is blocked
and there exist inhomogeneous and stable steady solutions
�11�. Note that this phenomenon, which is called “wave
propagation failure,” cannot be observed in the continuous
counterpart ��x→0�. In that case, the wave front will propa-
gate across the field without stopping. Especially, when f�u�
is a cubic function as shown in Eq. �14�, the criterion is

FIG. 5. Two length scales showing the differences between con-
tinuous space and a discontinuous cellular array. �a� Characteristic
scale l� represents the diffusion length of activator u in its lifetime.
By using the wave velocity c, we can obtain the representation l�

�
D�2=c
�1�2 which consists of observable quantities. �b� �
�
D�1 is the edge width of the traveling wave front in the con-
tinuum. By comparing this length scale with the distance �x be-
tween two cells, we can evaluate the discreteness of the field.
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given as dc��2 /4 ��11,48��. If we substitute it into Eq. �17�,
we have

� � 
D�1 �
�

2
�x �

1

4
�x . �18�

Consequently, the effect of natural spatial discreteness can-
not be negligible when the cell size �x is larger than 4
D�1,
as an order-of-magnitude estimation. Although this condition
tends to be weaker because of the existence of the inhibitor
and other parameters of the reaction function, Eq. �18� gives
us an intuitive understanding of the importance of discrete-
ness.

Note that in some continuous reaction-diffusion systems,
especially those having inhibitor coupling, the stationary
state can be obtained by tuning parameters to realize zero
velocity. It is a completely different scenario, however, from
the mechanism of wave propagation failure in a spatially
discrete system. Moreover, in a continuum Turing type of
model, the pattern robustness can be obtained by increasing
the coupling strength of inhibitor. It is not the case of our
model, however, since the inhibitor coupling is absent as Eq.
�1� shows. The discrete model ensured its pattern robustness
by the weak coupling of activator and the strong bistability,
which are small enough, D and �, correspondingly.

C. Growth rate of the embryo

There is a great variety in somitogenesis in different spe-
cies. The combination of the growth rate of the embryo and
the period of the segmentation clock plays an important role
in producing various numbers and sizes of somites. This is-
sue can also be explained by our model.

As introduced in Sec. III B, we adopted the hypothesis
that the growth of the embryo determines the distribution of
� through the ages of single cells. We assume that � is a
time-dependent function as indicated in Eq. �7�. In the case
of the result shown in Fig. 3�b�, the birth time tx of the cell at
position x was set as a linear function. Here we go a step
further and set tx as a general function: tx=rp

−1�−x� or xt=
−rp�t�. Thus, the derivative rp� is the growth rate. For the
embryo to elongate a certain distance dx, more time is
needed for a smaller rp�. Meanwhile, since every single
somite is produced from one cycle of the segmentation

clock, in species with a “quicker” segmentation clock, or
where the growth rate is slow compared to the segmentation
clock rate, there will be an increased number of smaller-sized
somites �14�.

The above profile of � can only generate such a parallel
spatiotemporal pattern so that the position curve of the new
somites �determination front� is a parallel shift of the posi-
tion curve of the posterior end, with an offset of a specific
time. However, many biological data �e.g., Fig. 7 in the Sup-
porting Information of �27�� show that it is possible for the
two position curves to become closer during embryo growth,
especially in the late stage of somitogenesis. This is why we
conclude with another reasonable scenario considering the
inhibition on �. As shown in Fig. 3�c� and Eq. �8�, the curve
of the determination front where the waves stop is not fully
dependent on the growth rate of the embryo.

V. CONCLUSION

In this paper, we proposed a simple reaction-diffusion
model with features of �1� discreteness and �2� absence of
inhibitor coupling. Those features are biologically important
and provide a different scenario of spatially periodic pattern
formation from Turing model. Especially the effect of “wave
propagation failure” of discreteness makes it possible to pro-
duce a robust stationary pattern in bistable excitable medium.

The biological relevance of our model to somitogenesis
were discussed in detail. A well agreement to experimental
observation was shown. Moreover, we inferred some impor-
tant physical aspects that are independent of the details of
biomolecular reactions. We made an order-of-magnitude
conclusion of two valid length scales �
D�2 and 
D�1� based
on the interaction among neighboring cells. The comparison
between these two theoretical estimation and experimental
measurement proved the importance of discreteness and gave
a strong support to the rationality of the model.
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